Halikov Hashimbek (hakikov) wrote,
Halikov Hashimbek
hakikov

ГИПОТЕЗА ПУАНКАРЕ ....? Если применяли имена то у нас почему то это пытаются запретит?

Гипотеза Пуанкаре́ — доказанная математическая гипотеза о том, что всякое односвязное компактное трёхмерное многообразие без края гомеоморфно трёхмерной сфере. Сформулированная в 1904 году математиком Анри Пуанкаре гипотеза была доказана в серии статей 2002—2003 годов Григорием Перельманом и подтверждена математическим сообществом в 2006 году, став первой и единственной на данный момент (2017 год) решённой задачей тысячелетия.

Обобщённая гипотеза Пуанкаре — утверждение о том, что всякое {\displaystyle n} n-мерное многообразие гомотопически эквивалентно {\displaystyle n} n-мерной сфере тогда и только тогда, когда оно гомеоморфно ей. Основная гипотеза Пуанкаре является частным случаем обобщённой гипотезы при {\displaystyle n=3} n=3. К концу XX века этот случай оставался единственным недоказанным. Таким образом доказательство Перельмана завершает и доказательство обобщённой гипотезы Пуанкаре.
Схема доказательства[править | править код]
Поток Риччи — это определённое уравнение в частных производных, похожее на уравнение теплопроводности. Он позволяет деформировать риманову метрику на многообразии, но в процессе деформации возможно образование «сингулярностей» — точек, в которых кривизна стремится к бесконечности, и деформацию невозможно продолжить. Основной шаг в доказательстве состоит в классификации таких сингулярностей в трёхмерном ориентированном случае. При подходе к сингулярности поток останавливают и производят «хирургию» — выбрасывают малую связную компоненту или вырезают «шею» (то есть открытую область, диффеоморфную прямому произведению {\displaystyle (0,1)\times S^{2}} (0,1)\times S^{2}), а полученные две дырки заклеивают двумя шарами так, что метрика полученного многообразия становится достаточно гладкой — после чего продолжают деформацию вдоль потока Риччи.

Процесс, описанный выше, называется «поток Риччи с хирургией». Классификация сингулярностей позволяет заключить, что каждый «выброшенный кусок» диффеоморфен сферической пространственной форме.

При доказательстве гипотезы Пуанкаре начинают с произвольной римановой метрики на односвязном трёхмерном многообразии {\displaystyle M} M и применяют к нему поток Риччи с хирургией. Важным шагом является доказательство того, что в результате такого процесса «выбрасывается» всё. Это означает, что исходное многообразие {\displaystyle M} M можно представить как набор сферических пространственных форм {\displaystyle S^{3}/\Gamma _{i}} S^{3}/\Gamma _{i}, соединённых друг с другом трубками {\displaystyle [0,1]\times S^{2}} [0,1]\times S^{2}. Подсчёт фундаментальной группы показывает, что {\displaystyle M} M диффеоморфно связной сумме набора пространственных форм {\displaystyle S^{3}/\Gamma _{i}} S^{3}/\Gamma _{i} и более того все {\displaystyle \Gamma _{i}} \Gamma _{i} тривиальны. Таким образом, {\displaystyle M} M является связной суммой набора сфер, то есть сферой.
Subscribe

Buy for 10 tokens
Buy promo for minimal price.
  • Post a new comment

    Error

    Anonymous comments are disabled in this journal

    default userpic

    Your reply will be screened

  • 1 comment